开发者社区> Matlab科研工作室> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码

简介: 【预测模型】基于BP神经网络、LSTM、GRNN实现风电功率预测附matlab代码
+关注继续查看

?1 简介

风电功率预测结果的准确性,不仅关系到风力发电厂的综合运行效率,也与区域运行成本具备直接联系,基于BP神经网络、LSTM、GRNN实现风电功率预测。经过实例分析,证明设计的方法对风电功率的预测结果误差均在最优误差范围内,预测的数值具有更高的价值。

2 部分代码

%% ARMA 预测

clc,clear,close all

load data%导入数据

T=30;

buchang=size(unnamed,1)-T;%预测步长

y = unnamed(1:T);

[m,n]=size(y);

%% %% 3.确定ARMA模型阶数

% ACF和PACF法,确定阶数

figure

subplot(211),autocorr( y );

subplot(212),parcorr( y );

figure

dy = diff( y );

subplot(211),autocorr( dy );

subplot(212),parcorr( dy );

%% ARIMA 模型

Mdl = arima(5,1,0);

EstMdl = estimate(Mdl,y);

res = infer(EstMdl,y); %res即残差

% 模型验证

figure

subplot(2,2,1)

plot(res./sqrt(EstMdl.Variance))

title('Standardized Residuals')

subplot(2,2,2),qqplot(res)

subplot(2,2,3),autocorr(res)

subplot(2,2,4),parcorr(res)

% 预测

[yF,yMSE] = forecast(EstMdl,buchang,'Y0',y);

UB = yF + 1.96*sqrt(yMSE); %95置信区间下限

LB = yF - 1.96*sqrt(yMSE); %95置信区间下限

yF=[unnamed(1:T);yF];

figure(4)

h4 = plot(unnamed,'b');

hold on

h5 = plot(yF,'r','LineWidth',2);

h6 = plot(m+1:m+buchang,UB,'k--','LineWidth',1.5);

plot(m+1:m+buchang,LB,'k--','LineWidth',1.5);

legend('实际幅值','预测幅值');

xlabel('时间序列')

ylabel('幅值')

title('arma预测图')

bp_mse = mean((yF-unnamed).^2);%mse

disp(['ARMA预测的mse=',num2str(bp_mse)])

bp_mae = mean(abs(yF-unnamed));%mae

disp(['ARMA预测的mae=',num2str(bp_mae)])

bp_rmse = sqrt(mean((yF-unnamed).^2));%均方差

disp(['ARMA预测的rmse=',num2str(bp_rmse)])

3 仿真结果

image

image.gif编辑

image

image.gif编辑

4 参考文献

[1]丁宇宇, 陈颖, 周海. 基于MATLAB语言的BP神经网络风电功率超短期预测模型[C]// 中国电机工程学会电力系统自动化专业委员会三届一次会议暨2011年学术交流会. 中国电机工程学会, 2011.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
【负荷预测】基于灰色理论负荷预测的应用研究(Matlab代码实现)
0 0
LSTM对比Bi-LSTM的电力负荷时间序列预测(Matlab)
LSTM对比Bi-LSTM的电力负荷时间序列预测(Matlab)
0 0
分类预测 | MATLAB实现ELM极限学习机多特征分类预测(四分类)
分类预测 | MATLAB实现ELM极限学习机多特征分类预测(四分类)
0 0
【ELM回归预测】基于极限学习机实现气象影响因子光伏出力预测附matlab代码
【ELM回归预测】基于极限学习机实现气象影响因子光伏出力预测附matlab代码
0 0
分类预测 | MATLAB实现LSTM长短期记忆神经网络多特征分类预测
分类预测 | MATLAB实现LSTM长短期记忆神经网络多特征分类预测
0 0
分类预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测
分类预测 | MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测
0 0
【LSTM时序预测】基于卷积神经网络结合长短时记忆CNN-LSTM实现时序数据预测附matlab代码
【LSTM时序预测】基于卷积神经网络结合长短时记忆CNN-LSTM实现时序数据预测附matlab代码
0 0
【Kelm回归预测】基于粒子群算法优化核极限学习机实现数据回归预测附matlab代码
【Kelm回归预测】基于粒子群算法优化核极限学习机实现数据回归预测附matlab代码
0 0
【BP回归预测】基于遗传算法优化BP神经网络GA-BP实现光伏出力预测附matlab代码
【BP回归预测】基于遗传算法优化BP神经网络GA-BP实现光伏出力预测附matlab代码
0 0
【TCN回归预测】基于TCN时间卷积神经网络实现数据多输入回归预测附matlab代码
【TCN回归预测】基于TCN时间卷积神经网络实现数据多输入回归预测附matlab代码
0 0
+关注
Matlab科研工作室
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题关注公众号 天天Matlab。
文章
问答
文章排行榜
最热
最新
相关电子书
更多
概率图模型
立即下载
纯干货|机器学习中梯度下降法的分类及对比分析
立即下载
纯干货 | 机器学习中梯度下降法的分类及对比分析
立即下载
http://www.vxiaotou.com